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A theoretical analysis is presented that brings steady, laminar free convection from a vertical 
flat plate immersed in a power-law stratified fluid within the framework of classical 
boundary-layer theory. Two classes of similarity solutions corresponding to linearly 
increasing (positive M class) and linearly decreasing ( negative M class) plate temperature 
with the plate height are studied. These similarity solutions are numerically determined 
for the case of fixed wall temperature and variable environment temperature, as well as 
for the case of fixed environment temperature with variable wall temperature. Of special 
interest are the effects of the power-law viscosity index, the generalized Prandtl number, 
the stratification parameter, and the type of thermal wall condition on the velocity and 
temperature fields and hence on the skin-friction coefficient and the wall heat transfer 
parameter. 
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I n t r o d u c t i o n  

Of particular interest in classical boundary-layer theory are 
those fluid-flow problems for which the governing equations 
possess similarity solutions. The problem of natural convective 
heat transfer from bodies immersed in fluids does not always 
admit similarity solutions. The nonsimilarity in this case arises 
either due to thermally stratified fluid (in which the body is 
immersed) or due to nonuniform surface temperature of the 
body. 

Recently, new classes of similarity solutions for a natural 
convective flow of a Newtonian fluid on a vertical fiat plate 
suspended in a quiescent, thermally stratified medium have 
been reported by Semenov (1984), Kulkarni et al. (1987), and 
Henks and Hoogendoorn (1989). Stratified fluid occurs quite 
frequently in nature (for example, in the atmosphere and 
ocean), in heat transfer in closed containers, in environmental 
chambers, in several heat-rejection and energy-storage 
processes, and in a number of engineering devices. In fact, this 
subject is not a new one, for it has been taken up for 
consideration from the beginning of experimental studies on 
natural convection in liquids; detailed references of the earlier 
work can be found in the papers by Takeuchi et al. (1975), 
Chen and Eichhorn (1976), and Jaluria and Himasekhar 
(1983). The problem has been also recently extended by Bejan 
(1984), Takhar and Pop (1987), Nakayama and Koyama 
(1987) to the case of natural convection from a heated surface 
embedded in a thermally stratified porous medium. 
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A number of industrially important fluids such as molten 
plastics, polymers, pulps, foods, etc. exhibit non-Newtonian 
fluid behavior. Due to the growing use of these non-Newtonian 
substances in various manufacturing and processing industries, 
considerable efforts have been directed towards understanding 
their friction and heat transfer characteristics. However, many 
of the inelastic non-Newtonian fluids encountered in chemical 
engineering processes are known to follow the power-law model 
in which the shear stress varies according to a power function 
of the strain rate. But for this relatively simple power-law 
model, the mathematical complexity of the governing equations 
increases because of the extra nonlinearity in the viscous terms. 
A fundamental question then arises: Do the governing 
equations for the natural convection from a vertical plate 
immersed in stratified power-law fluids possess similarity 
solutions ? 

The objective of this study is to show that the elegant 
similarity solutions devised by Semenov (1984) can be extended 
to the more general case of power-law fluids. However, for the 
sake of simplicity, we consider only the situation when both 
the temperatures of the plate Tw(x) and of the ambient fluid 
T= (x) vary linearly with the distance x from the leading edge. 
Thus, we will obtain a class of similarity solutions for this 
problem that can be reduced to the proper solution 
Tw = constant and Too (x) linearly decreasing with x as well as 
to Tw(x) linearly increasing with x and Too =constant.  
Discussions are concentrated on how the velocity and 
temperature profiles and the skin friction and heat transfer 
coefficients in the boundary layer are influenced by the flow 
behavior index n, the generalized Prandtl number Pr, and the 
parameter m indicating whether the ambient temperature or 
the wall temperature is fixed. 
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Natura l  convect ion  to p o w e r - l a w  f lu ids:  J. K. Lee et al. 

A n a l y s i s  

Consider a natural-convection laminar boundary-layer flow 
along a vertical semi-infinite flat plate immersed in a thermally 
stratified, quiescent power-law fluid with the following 
transport properties as given by Shulmann and Berkovsky 
(1966), Shvets and Vishneski (1987), Gryglaszewski and 
Saljnikov (1989), Pop and Gorla (1990), and Pop et al. (1991 ) 
in the following manner: 

z 0 = KI½12I ("- 1)/2eij (1) 

q = -k1½121 "/2 grad T (2) 

where zq and ei j  are the tensors of stress and strain-rate, 
respectively, 12 is the second invariant of the strain-rate tensor, 
T is the temperature inside the boundary layer, K and k are 
the consistency index and thermal conductivity, respectively, 
and n and s are the exponents identifying non-Newtonian 
behavior in the flow and heat transfer, respectively. The strict 
Boussinesq approximation is assumed, i.e., the variation of fluid 
density with temperature is accounted for only in the buoyancy 
term of the momentum equation; all other fluid properties are 
assumed to be constant, and viscous dissipation is neglected. 
We choose (x, y ) as coordinates, with the x-axis measured along 
the plate in the upward direction and the y-axis normal to it. 
Under these considerations, the steady laminar boundary-layer 
equations can be written as given by Shenoy and Mashelkar 
(1982) and Wang and Kleinstreuer (1987) in the following 
manner : 

Ou Ov 
- - + - - = o  (3) 
~x ~?y 

Ou t?u K ~3 / du "-1 c3u\ 
u - -  + v - -  = gfl(T - Too) + [ ) (4) 

ax Oy P ~ \l~l 

u - - + v - - = a  (5) 
dx Oy Oy \lOYl 

which are to be solved with boundary conditions 

y = 0 :  u = v = 0 ,  T = T , ( x )  
(6) 

y = o o :  u = 0 ,  To~(x) 

In these equations, (u, v) are the velocity components along 
the (x, y)-axes, 9 is the acceleration due to gravity, fl is the 
coefficient of thermal expansion, and p and ~ are the density 
and thermal diffusivity, respectively. 

For spatial distributions Tw(x) and T~(x) ,  a similarity 
solution of Equations 3 to 6 exists. Thus, the temperature is 
written as 

T = (m + h(~, r/))4 AT + T r (7) 

with 

q = 0 :  h(~,q) = 1, T w = ( m + I ) ~ A T + T  r 
(8) 

q ~ o c :  h ( ~ , q ) = 0 ,  T ~ = m 4 A T + T ~  

where h is the reduced temperature function, A T =  
7" , (0 ) -  T®(0) is a characteristic temperature difference, and 
7", is a constant. The transformed coordinates in Equation 7 are 

= Mx + N ( (  >t O) 

rl = [ (gfl AT )2 - n  (p/k )2lMi.] l/2(n+ 1)4(1 - n)/(1 +,)y 

M and N being constants. We shall further see that the 
transformed x-coordinate defines two classes of similarity 
solutions that can be completely characterized by the expression 
sgn(M). These similarity solutions are called the positive M 
class if sgn(M) = 1 at M > 0 and the negative M class if 
s g n ( M ) = - 1  at M < 0 ,  respectively (see Henkes and 
Hoogendoorn 1989). 

Next, the stream function ~O is introduced of the form 

F(g fl AT)2"-  1 ql/2(n+ 1) 
= [_" ~ F  (K/P)ZJ ¢2./(,+,)f(¢,,) 

which defines the u=O~k/Oy and v=-~?~k/~3x velocity 
components as 

u = (9# ATIIM)t /2~ ¢' 

_MF.(oflAT)2,_-, ]1/2,,+ ,) 
v= L IMI 2"+1 (K/P)Z ~(.-1)/(.+1) 

1 - nrlf, Of) 2n f + - -  + 4  (9) 
× ( n ~ l  l + n  

N o t a t i o n  

ei j  

f 
g 
h 
12 
K 
k 
m 

M , N  
1"1 
Pr 
S 

T 
T, 
AT 
U,I) 

x , y  

Strain-rate tensor 
Reduced stream function 
Acceleration due to gravity 
Reduced temperature function 
Second invariant of the strain-rate tensor 
Consistency index 
Thermal conductivity 
Parameter describing whether the environment 
temperature (m = 0) or the wall temperature 
(m = - 1 ) is fixed 
CoeffÉcients in the 4-coordinate 
Flow behavior index 
Generalized Prandtl number 
Heat transfer behavior index 
Temperature 
Reference temperature 
Characteristic temperature difference 
Velocity components along (x, y)-axes 
Coordinates along and normal to the plate 

Greek symbols 

a Thermal diffusivity 
fl Thermal expansion coefficient 
6 Unit tensor 
r/ Similarity y-coordinate 
4 Transformed x-coordinate 
p Density 
z Stress tensor 
~O Stream function 

Superscripts 

Differentiation with respect to r/ 

Subscripts 

w Wall condition 
oc Environment condition 
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Here, primes denote differentiation with respect to ~/. Equations 
4 and 5 now reduce to 

( I f " [ , - t f " ) '  + s g n ( M ) [ n ~ l  f f " - ( f ' ) 2 ]  + h 

= s g n ( M )  f '  _ f, ,  Of (10) 

1pr ~2(t-"+s'/'t+"'(lf"l'h')'+ s g n ( M ) [ n ~ l  f h ' - ( h +  m)f'] 

/ ,  ~h _ h' i f )  = s g n ( M ) ~ f  ~7 ~ _  (11) 

and boundary conditions 6 and 8 become 

r /=O:  2 n f + ( n + l ) ~ = O ,  f ' = 0 ,  h =  1 

~/--.c¢: f ' = 0 ,  h = 0  (12) 

In Equation 11, Pr is the generalized Prandtl number given by 

Pr = _1 [(gfl AT )3/IMI] ("- x -s)/2t, + 1)(K/p)~S+,)/(,+ z) 
Ct 

We see from Equations 10 to 12 that they become similar when 

S = t l - - 1  

The mathematical problem defined by Equations 10 to 12 then 
transforms into 

(,f","-If")'+ s g n ( M ) [ n ~ l  ff"-(f')2] + h = 0 (13) 

1 (If"l"-Zh')' + s g n ( M ) [ n ~ l  f h ' - ( h + m ) f ' l  = 0 (14) 

and 

f ( 0 ) = f ' ( 0 ) = 0 ,  h ( 0 ) =  1 
(15) 

f ' ( ~ )  = h(oo) = 0 

The above is a set of coupled, nonlinear, second-order, ordinary 
differential equations with linear boundary conditions that do 
not contain any function of x. Note that Equations 13 and 14 
for n = 1 describe the free-convection flow from a vertical plate 
immersed in a Newtonian stratified medium. The deviation of 
n from unity indicates the degree of deviation from Newtonian 
behavior. 

Special situations in Equations 13 and 14 are m = 0 for the 
non-stratified environment and m = - 1  for the fixed 
wall-temperature situation. The environment is stably stratified 
if dTo~/dx > 0, and hence mM > 0. Then, we notice that the 
dependence of the equations on the sgn(M) reflects the fact 
that convection depends substantially on whether the 
temperature of the plate increases (dT,,/dx > 0) or decreases 
(dTw/dx < 0) along the height. No solutions were presented 
for Equations 13 and 15 before, and these solutions are reported 
here for the first time. 

Of particular interest in most boundary-layer natural- 
convection problems are the velocity and temperature gradients 
at the wall, from which the local skin-friction and local heat 
transfer coefficients can be calculated. Thus, the skin friction 
and heat transfer at the wall can be expressed as 

Tw = KE(gfl AT)3(p/K)2~'/IMI]If"(O)I" (16) 

qw = k AT [ (gfl AT )2.- 1 (p / K ) 2"IMI~4] t/2t,+ ~) 

x If"(O)l"-~h'(O) (17) 

which make f"(O) and h'(0) important parts of the solution. 

Natural convection to power- law f luids: J. K. Lee et al. 

N u m e r i c a l  s o l u t i o n  

The numerical procedure used here solves the two-point 
boundary-value problems for a system of N ordinary differential 
equations in the range (X, X x ). The system is written as 

dy, 
- f i ( x ,  yl,Y2 . . . . .  YN), i= 1,2,3 . . . . .  N 

dx 
and the derivatives f~ are evaluated by a procedure that 
evaluates the derivatives of yl, Y2 . . . .  , YN at a general point X. 
Initially, N boundary values of the variable y~ must be specified, 
some of which will be specified at X and some at X~. The 
remaining N boundary values are guessed, and the procedure 
corrects them by a form of Newton iteration. Starting from the 
known and guessed values of Yi at X, the procedure integrates 
the equations forward to a matching point R, using Merson's 
method. Similarly, starting from X~ it integrates backwards to 
R. The difference between the forward and backward values of 
y~ at R should be zero for a true solution. The procedure uses 
a generalized Newton method to reduce these differences to 
zero by calculating corrections to the estimated boundary 
values. This process is repeated iteratively until convergence is 
obtained to a specified accuracy. 

The tests for convergence and the perturbation of the 
boundary conditions are carried out in a mixed form. For 
example, if the error estimate for Yi is ERROR~, we test whether 
ABS (ERROR~) < ERROR~ × (1 + ABS yi). Essentially, this 
makes the test absolute for yi << 1 and relative for y~ >> 1. Note 
that convergence is not guaranteed, particularly from a poor 
starting approximation. 

A serious difficulty that may arise with boundary-value 
problems is inherent instability. In such cases, integration from 
one or both ends of the range wilt produce rapidly increasing 
solutions that may occasionally lead to overflow before the 
matching point is reached. The position of the matching point 
R can be varied to improve the situation; if the solution 
increases rapidly for forward (or backward) integration, R 
should be taken at X (or X~ ); if it increases in both directions, 
R should be taken between X and X~. If the matching point 
R is at one of the endpoints X or Xt, there is no need to 
estimate the unknown boundary values accurately, since there 
they are not required for integration. Another difficulty that 
often arises is the case when one end of the range, say X1, is 
at infinity. The end-point is approximated by taking finite 
values for X1, which is obtained by estimating where the 
solution will reach its asymptotic state. The computing time 
for integrating the differential equations can sometimes depend 
critically on the quality of the initial guesses of the unknown 
boundary conditions, the locations of the matching point and 
the infinite endpoint. 

R e s u l t s  and  d i s c u s s i o n  

Solutions of Equations 13 to 15 have been determined for some 
values of the power-law index ranging from n = 0.5 to 1.5 and 
Pr = 10 and 100, respectively. 

The following cases are considered: case I, m = 0 ,  
sgn(M) = 1, (nonstratified environment with increasing wall 
temperature); case II, m = - 1, sgn (M) = 1 (unstably stratified 
environment with fixed wall temperature); case III, m = 0, 
sgn (M) = -- 1 (nonstratified environment with decreasing wall 
temperature); and case IV, m = - 1 ,  s g n ( M ) =  - 1  (stably 
stratified environment with fixed wall temperature). 

The resulting similarity solutions for the reduced velocity 
f'(~/) and temperature h (r/) profiles are displayed in Figures 1 
through 8 for three power-law fluids: n = 0.5 (pseudoplastic), 
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Natural convection to power- law f luids. J. K. Lee et al. 

DIMENSIONLESS VELOCITY DISTRIBUTION 

Pr=10 

CASE I : m= O, ion (N) - 1 

m . . . .  CASE I I  : m--d, IOn(N) - t 
¢;- 

L~ ~ n =  t.5 

/ 

-0,0 0'.4 0'.8 l',2 t',6 '. 2',4 

Figure 1 Dimensionless velocity distribution versus similarity 
variable r / for  various f low behavior indexes n (Pr  = 1 0 ) ;  for case 
I: m = 0; s g n ( M )  = 1; case I1: rn = - 1 ,  s g n ( M )  = 1 

DIMENSIONLESS VELOCITY DISTRIBUTION 

primO 

CASE I I I :  m" O, Ion g4) - - t  

CASE IV: B=-~, son(N) =-! 

° 

A 

n --- 1 (Newtonian), and n = 1.5 (dilatant). Figures 1 to 4 show 
that the momentum boundary-layer thickness decreases as the 
flow behavior index n increases for the positive M-class 
solutions• For the nonstratified environment case and negative 
M-class solutions, the momentum boundary-layer thickness 
decreases as n increases. However, for the fixed wall- 
temperature case (m = 1), the opposite behavior is observed. 
The velocity profiles are lower for sgn(M) = 1 than those for 
sgn(M) = - 1 .  They also decrease with the increase of the 
generalized Prandtl number. 

Figures 5 to 8 depict the effects of the system parameters on 
the temperature distribution within the boundary layer. The 
difference in h(~/) resulting from the two positive and negative 
M-class similarity solutions is clearly seen here. These figures 
would also indicate that there is a temperature reversal in the 
boundary layer that may be stronger at high Pr and weaker at 
lower Pr. The reversal in the temperature occurs because the 
cooler fluid from the bottom overshoots upward to a level where 
the ambient temperature is higher. We note that for a 
Newtonian fluid (n = 1), the flow- and temperature-reversal 
regimes are predicted by Kulkarni et al. (1987) and by Henkes 
and Hoogendoorn (1989). Thus there appears to be good 
qualitative agreement between the present results when n = 1 
and the literature values. It is quite likely that the power-law 
index n has a profound effect on the magnitude of the 
temperature reversal. We hope to be able to report on this 
matter in due course. 

Furthermore, we see from Figure 7 that for a nonstratified 
environment (m = 0) there is initially a fall of the temperature 
profile within the boundary layer from its value at the wall. 
This fall is then followed by an increase of the temperature 
profile. The peak temperature for a dilatant fluid (n = 1.5) has 
the largest value when compared with the peak magnitude for 
a Newtonian fluid (n = 1). Such a behavior was not observed 
at lower values of the Prandtl number. 

/ \ 
/ \ 

/ \ 

/ \ 
/ 

/ \ 
J t / '\ 

i /-T-,.s '\ 

3,.o 
' \ 

o'.4 o'.e t'.~ t'.6 2'.~' 

+1 
¢;- 

~,- o"  

o= 

c;- 

oo o 
°o'.o ~'.4 °0+.0 

Figure2 Dimensionless velocity distribution versus similarity 
variable ~/for various f low behavior indexes n (Pr  = 1 0 ) :  for case 
II1: m = 0, s i n ( M )  = - 1 ;  case IV: rn = - 1 ,  s g n ( M )  = - 1  

DIMENSIONLESS VELOCITY DISTRIBUTION 

PP=IO0 

CASE I : m- O, Ion (M) - ! 

CASE I I  : m--t. Ion (M) - J 

n l / ~ i \ i  ~ .5 

0.4 0.8 ~.2 ~.6 2.0 2.4 

Figure3  Dimensionless velocity distribution versus similarity 
variable r / for  various f low behavior indexes n ( Pr = 1 0 0 ) :  for case 
I: m = 0, s g n ( M )  = 1; case I1: m = - 1 ,  s g n ( M )  = 1 
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DIMENSIONLESS VELOCITY DISTRIBUTION 

Pr=100 

CASE I I I :  P O, | s n  ~ - - t  

CASE I V :  ~ - 1 ,  s g n ~  - - J  

, / " ~ , ,  
, \ / 

/ ,, 
/ \ 

i 
i / , /  . . . .  .\, \ 

;</'/ \',\ \ \  
~ n  " 1 . 5  ~ ~ \ , \  

0 0 . 3  0 . 6  0 \ 9  ! . 2  t . 5  tl. 8 

Figure4  Dimensionless velocity distribution versus similarity 
variable ~/for various f low  behavior indexes n (Pr  = 1 0 0 )  : for case 
II1: m = O, s g n ( M )  = - 1 ;  case IV: m = - 1 ,  s g n ( M )  = - 1  

Natural convection to power- law fluids: J. K. Lee et al. 

DIMENSIONLESS TEMPERATURE DISTRIBUTION 

Pr=iO 

CASE III: lip, O, sSh04) ~ !  

CASE I V :  m - - l .  I lgn(M) - -J .  

t n =  t , 5  

~~~-" /~i.o ""\, 

Figure 6 Dimensionless temperature distribution versus similarity 
variable q for various f low behavior indexes n (Pr  = 10 ) :  for case 
II1: m = 0, s g n ( M )  = - 1 ;  case IV: m = - 1 ,  s g n ( M )  = - 1  

DIMENSIONLESS TEMPERATURE DISTRIBUTION 

Pr=~O 
CASE I : m- O, sgn 04) - ! 

CASE IX : m - - l ,  sgn(M) - t 

/ 
o ]  n - f . .5 

~ ~ 1.0 

" " - 2  

o s' . ,  - -  o'.8 t . 2  t . 8  = , . o - - - - - - 7 . 4  

Figure 5 Dimensionless temperature distribution versus similarity 
variable ~/for various f low behavior indexes n (Pr  = 1 0 ) :  for case 
I: m = 0, s g n ( M )  = 1; case I1: m = - 1 ,  s g n ( M )  = 1 

DIMENSIONLESS TEMPERATURE DISTRIBUTION 

Pr= 100 

CASE I : w-  0. I g n  04) - t 

CASE II : m - - l .  sgn(N)  - ! 

j : :  ,.; 

1 .0  

\ 

0 " 4  0 : 8  1'.-2 t . 6  2 ' .0  2 ' .4  

Figure 7 Dimensionless temperature distribution versus similarity 
variable r / for  various f low behavior indexes n (Pr  = 1 0 0 ) :  for case 
I: m = O, s g n ( M )  = 1; case I1: m = - 1 ,  s g n ( M )  = 1 
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DIMENSIONLESS TEMPERATURE DISTRIBUTION 

Pp=~O0 

CASE I I I  : m- O, son (HI - - J  

. . . .  CASE I V :  m--1. sgn(M) - - J  

. . . .  ~ .  ', \ 

i t \\ 

0 . 3  0 . 6  0 . 9  ~ . . 2  1 . 5  1 . 8  

Figure 8 Dimensionless temperature distribution versus similarity 
variable ~/for various f low behavior indexes n (Pr  = 1 0 0 ) :  for case 
II1: rn = O, s g n ( M )  = - 1 ;  case IV: rn = - 1 ,  s g n ( M )  = - 1  

DIMENSIONLESS WALL SKIN FRICTION 

PR = 10 

¢Um/E 

| - I "  0 :  I ~ f l 0 0  • | 

2 " m - - l :  e ~ ' ~ N  - 1 

$ - m -  0 :  e O n M -  - i  
- . .  : - - 

m 
6" 

C 

A 
O 

m 

R 
2 5  0'. 5 0  0'.  7 5  t ' ,  O0 t ' .  2 5  t ' .  50  i .  7 5  

F L O W  B E H A V I O U R  I N D E X ,  n 

Figure 9 Dimensionless wall  skin friction for various f low behavior 
indexes n (Pr  = 1 0 )  for cases I, II, III, and IV 

Finally, representative results for the dimensionless wall 
skin-friction coefficient If" (0)1" in Equation 16 and dimension- 
less wall heat transfer rate - I f"(0) l"- lh ' (0)  in Equation 17 
are presented in Figures 9 through 12. From Figures 9 and 10, 
we note that the friction factor decreases with n for cases 
( m = - l ,  s g n ( M ) = l )  and ( m = 0 ,  s g n ( M ) = - l ) .  The 

reverse behav ior  is observed for cases (m = 0, sgn ( M )  = 1 ) and  
(m = - 1, s g n ( M )  = -- 1 ). F r o m  Figures 11 and 12 we observe 
tha t  the Nussel t  n u m b e r  monotonica l ly  decreases with the flow 
behavior  index, n, for all the cases considered• On the other  
hand ,  the impact  of the generalized Prandt l  n u m b e r  is more  
visible for the skin-friction coefficient than  for the wall heat 
t ransfer  rate. It is wor th  ment ion ing  to this end that  the 
information contained in Figures 9 to 12 should serve as a 
guide when one is t rying to choose a non -Newton ian  fluid for 
max imum heat  t ransfer  rate with min imum drag effects• 

m 

o 

i 

:I 
I 

I 

°o.25 

DIMENSIONLESS WALL SKIN FRICTION 

PR = iO0 

1 - n -  0 :  e l ~ 0 ~ -  l 
Z • • -1  : e O n N  i 

3 - n -  0 :  = ~ N - - t  

4 - • .  -~L : egn(M) . -1  

" ~ 4  

o'.5o - - -  -~.7~ i~.oo 1'.2-5-~- Y.~o ?.75 
FLOW BEHAVIOUR INDEX, n 

Figure 10 Dimensionless wall  skin friction for various f low 
behavior indexes n (Pr  = 1 0 0 )  for cases I, II, III, and IV 

('~j" 

0 

4-- 
m 

DIMENSIONLESS WALL HEAT TRANSFER 

PR = I0 

/ - 
1 - m -  0 :  0 0 n N  • 1 

2 - | - - 1 :  0 0 r i m  1 

\ $ - m ~  0 :  q n N  -$  
4 - • • - |  : IlqJM ~ - |  

2 J 

3 

.as o'6o 0'.7s t'.o0 t'.z5 t'.50 t'.75 
FLOW BEHAVIOUR INDEX. n 

Figure 11 Dimensionless wall  heat transfer rate for various f low 
behavior indexes n (Pr  = 10 )  for cases I, II, III, and IV 
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DIMENSIONLESS WALL HEAT TRANSFER 

PR = 100 

7==--_~_._o o. 

I ¢3 

° - m -  O: ~ l n M - - t  
4 - 1 1 - - I :  Igll I~ u - I  

2 J 

0'.50 0'.75 t ' .00 ] ' .E5 t ' .50 I ' .75 
FLOW BEHAVIOUR INDEX, n 

Figure 12 Dimensionless wal l  heat transfer rate for various f low 
behavior indexes n (Pr = 100) for cases I, II, III, and IV 

Concluding remarks 

The purpose of this article has been to determine numerically 
the similarity solutions for the problem of laminar natural 
convection from a vertical plate suspended in a quiescent 
thermally stratified power-law fluid within the boundary-layer 
scheme. New classes of solutions of the boundary-layer 
equations for two possible wall-temperature distributions were 
derived. As expected, it is found that both the momentum and 
thermal boundary-layer thickness increase with decreasing 
viscosity index n. However ,  the stratification parameter m has 
a pronounced effect on these boundary-layer thicknesses. 

Solutions with m = - 1 and s g n ( M )  = 1 (unstable stratifica- 
t ion) give higher velocity profiles than for m = 0 and 
s g n ( M )  = 1 (non-stratified environment)  when Pr  = 10 and 
all values of the viscosity index n are considered (see Figure 
1). But when m = - 1  and s g n ( M ) =  - 1  (stable stratifica- 
t ion) ,  the velocity profiles are lower for a pseudoplastic 
substance (n = 0.5 ) (see Figures 2 and 4).  However ,  the reverse 
holds for a dilatant substance (n = 1.5) when Pr  increases (see 
Figures 1 and 3). The skin-friction coefficient decreases for an 
unstably stratified environment  and increases for a stable one. 
The wall heat transfer, on the contrary, decreases in both the 
stable and unstable environments.  Both the Prandtl  number  
and the stratification parameter  have a more pronounced effect 
on the skin-friction coefficient than on the wall heat transfer. 

Other,  perhaps more important  observations of this study 
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include the flow and temperature reversals. Since no theoretical 
or  experimental data exist for the problem of natural convection 
from an isothermal or  nonisothermal flat plate placed in 
thermally stratified power-law fluids, it is not  possible here to 
compare  our  results. Consequently,  there is a definite need for 
more systematic studies for further evaluation and comparison 
for some flow and heat transfer situations. 
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